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We investigated the spatial-dependent stochastic effects originating from the finite number of bicoid proteins
in Drosophila melanogaster, which are crucial to cell development. We obtained an exact solution to the
spatial-dependent stochastic chemical master equation and recovered the usual reaction-diffusion solution for
the average of the bicoid concentration, valid in the bulk. We also used the steady state probability to get the
spatial potential landscape. The stochastic effects are captured by the Poisson distribution; so, as the average of
the bicoid concentration decreases from the anterior �A� to the posterior �P� of the embryo, the statistical
fluctuations also decrease. An alternative way of interpreting this is that the shape of the spatial potential
landscape shrinks from A to P. While the mathematical result is known, we offer a simple approach to
understanding why it is what it is and give associated physical intuitions. The approach can be generalized and
applied to any problem with a particle that diffuses, decays, and has a stochastic source.
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Cell functions are often realized by complex networks of
proteins and genes interacting with one another. Researchers
have generally used chemical kinetic equations to represent
the interactions in these networks. However, while conven-
tional chemical kinetic equations work perfectly well under
the bulk conditions, they do not always give accurate results
in the cell due to large statistical fluctuations caused by the
relatively small number of molecules involved �1–4�. Fur-
thermore, an organism is not a homogeneous system; spatial
dependence is crucial for many biological functions. One
concrete example of a system for which these details are
important involves the embryo development of Drosophila
melanogaster, the common fruit fly.

D. melanogaster is a common organism for genetic and
developmental biology for several reasons. It is easy to per-
form experiments on, and a large amount of background
knowledge exists on it. Also, until late in its development as
an embyro, the organism lacks distinct cells; each embryo
has a large number of nuclei, but there are no cell mem-
branes to block the diffusion of proteins from one nucleus to
another. This last piece of information makes D. melano-
gaster ideal for refining ideas of diffusion-related spatial pat-
tern formation in an embryo.

Of the proteins and genes in the embryo, a few stand out
for having large effects on development. One of these is the
bicoid protein. It is useful to observe for four main reasons.
First, it seems to have a direct regulatory effect on many
developmental genes �5,6�. Second, its production is inde-
pendent of the presence or absence of other developmental
proteins. Third, its average concentration level at any given
spatial point is essentially constant in time for much of gas-
trulation. Fourth, its concentration and effects on other pro-
teins are very obviously subject to statistical fluctuations,

which make the use of stochastics absolutely necessary for a
realistic understanding of the system �7,8�. Specifically, the
internal noise of the system, the variability due to finite num-
bers of proteins, has caused significant debate on how the
embryo can so accurately determine the spatial location of
the sudden jump in the concentration of a protein, called
hunchback, which is dependent on bicoid concentration. The
hunchback gradient, in turn, is central in determining the
location of the head of the fly, and its spatial precision is
greater than one might expect �7,8�.

These aspects of the protein have inspired numerical cal-
culations using implementations of the chemical master
equation for the system �7,9�. Such calculations have gener-
ally been in one spatial dimension because there is an easily
recognizable gradient in the anterior-posterior direction
which has a definite effect on development. The dorsal-
ventral axis, in contrast, has a much smaller gradient, and at
least in the case of bicoid, it seems to have less of an effect
on the initial stages of development.

Even these numerical calculations need some assump-
tions, however. We will show in this paper that the same
simple assumptions which make the problem calculable nu-
merically or using field theory �as in �10�� also make an
exact and straightforward analytic solution possible for the
bicoid probability distribution in one spatial dimension, and
offer arguments as to why the same methods should work in
other geometries. This is more than simply a continuation of
a trend away from the bulk average concentration calcula-
tions done in the past, though it is that as well; even with an
exact solution already known from �10�, this analysis is im-
portant because it significantly clarifies our understanding of
the system and similar systems. It offers a simple global
characterization of the system, as opposed to local ap-
proaches or field theoretic characterizations.

The basic assumptions of our approach involve the three
processes which govern the protein’s behavior. First, the pro-*Corresponding author. jin.wang.1@stonybrook.edu
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duction of bicoid �which occurs in a highly localized part of
the embryo� is assumed to be stochastic in nature. Second,
movement of the protein through the embryo is assumed to
behave according to traditional �random-walk-type� stochas-
tic diffusion. Third, bicoid degradation is assumed to be a

stochastic event, i.e., through a decay reaction Bcd→
k

0” .
These three assumptions lead to a spatial-dependent

chemical master equation, which is a complete description of
the probabilities involved in the system assuming no other
effects. The importance of the chemical master equation to a
gene-protein network can be compared to that of the
Schrödinger equation for an atom: it forms the fundamental
basis for further detailed characterization �11�. While the
nonlinear rate equations provide a quantitative description of
cellular networks on the average level, often showing com-
plex behavior, the probabilistic description obeys the linear
master equation. Linearity can make the probabilistic de-
scription more regular even in more chaotic deterministic
cases. While the chemical kinetics gives reasonable descrip-
tion in the bulk, the probabilistic description provides the
foundation for the mesoscopic intracellular network. The
chemical kinetics gives the deterministic trajectories with a
probability of one, but the probabilistic description provides
a distribution of possible protein concentrations. In other
words, when one knows the probability distribution, one
knows the weights of individual states in protein concentra-
tion space. It is in this sense we can call it a probabilistic
landscape in protein concentration space.

Landscape concepts have been introduced to the biology
community in the areas of molecular and developmental bi-
ology �12,13� and population dynamics �14,15�. The land-
scape is quantified in the areas of protein dynamics �16� and
protein folding �17� while the potential energy landscape is
known a priori with quasiequilibrium assumptions. For non-
equilibrium cellular networks, the potential landscape is not
known a priori. One can, however, obtain the information by
finding the probabilistic distribution through solving the
master equation. A generalized potential U corresponding to
the probabilistic description P for the nonequilibrium net-
works can be defined as U=−ln P in analogy with the Bolt-
zman relationship in equilibrium statistical mechanics
�11,18–24�. Once the landscape can be quantified this way, it
can give a global characterization of the network, providing
the weight distribution in the protein concentration space and
quantifying the importance of each state �in terms of weight�.
The stability, robustness, and function of the network can be
now studied in a global and physical way from landscape
perspectives �11,18–24�.

When the concentration has spatial dependence, as in the
developmental process, the probability distribution in protein
concentration space becomes a probabilistic functional of
protein concentrations which themselves also depend on
space. It is in that sense a statistical probabilistic field theory
representation �field being the protein concentrations which
depend on space�. Therefore by solving the probabilistic
functional, we can map out the spatial-dependent landscape
of the cellular network. This is crucial for unraveling the
origin of stability, robustness, and function of spatial-
dependent cellular networks.

It should be noted that one complicating factor generally
not included in master equation calculations is external
noise, which can represent anything from environmental
temperature fluctuations to diffusion from outside the em-
bryo, and is not explicitly accounted for in this model. Ignor-
ing such effects, one arrives at a chemical master equation.
This equation is most easily expressed in terms of a vector,
n� , whose components n� = �n0 ,n�x ,n2�x , . . .�= ��nx�� corre-
spond to the number of bicoid proteins at evenly spaced
spatial positions x=0,�x ,2�x , . . ., with �x an essentially ar-
bitrary constant. The equation is �25,26�

g�P�n� − 0̂� − P�n��� ,

dP�n��
dt

= + k�x
��nx + 1�P�n� + x̂� − nxP�n���

+ D�xy
��nx + 1�P�n� + x̂ − ŷ� − nxP�n��� , �1�

where P�n�� is the probability that number and position of
proteins is described exactly by n� . g is the rate of protein

generation, 0̂ is a unit vector in the 0 space �representing a
single protein at the origin, spatial point 0�, and the term
multiplying g represents the process of a protein being cre-
ated at the origin. k is the rate of degradation, x̂ represents a
single protein at point x, and the term multiplying k repre-
sents the protein decay at any spatial position. D is the finite-
volume diffusion rate, and the term multiplying it gives dif-
fusion from each spatial point to its neighbors. The sums
over x are over all space x=0,�x ,2�x , . . ., and over y are all
spatial neighbors of x �y=x��x�.

The next step in this process would be to find a time
independent steady-state solution, dP�n��

dt =0 for all n� . It should
be noted that the deterministic form of this problem can be
easily solved; 0= �C

�t =D �2C
�x2 +g��x�−kC yields C�x�

= �g /�kD�e−x�k/D. This corresponds to the reaction diffusion
equation and its associated solution, often used in bulk stud-
ies. However, the uncertainties in concentration due to the
finite number of molecules can only be found by solving the
master equation. While the master equation itself does not
immediately suggest a solution, the assumptions made do
strongly suggest the use of Green’s function techniques often
encountered in physics and chemistry. Each individual pro-
tein has no interactions of any kind with any other protein;
its creation, diffusion, and decay are all completely indepen-
dent of any other effects. Therefore we propose an ansatz in
a format slightly different from that of the master equation,

P = �
n=0

�
e−g/k�g/k�n

n! 	
m=1

n

G�xm� , �2�

where n is the total number of proteins present in the system,
m is a representation of each protein in the system, and
G�xm� is actually a multidimensional generating function de-
scribing the chance that protein m is at the spatial point xm.
One can understand the probability expression above as the
decomposition of the generation functions in Poisson space.

In order to prove the validity of the ansatz, we must first
match its form more closely with the notation used in the
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master equation. Let us consider the spatial point x. For any
given total number of proteins n, there are n proteins each
with probability distribution G. Let Gx be the discrete ver-
sion of G�x�. Then for a given n, the probability of nx pro-
teins existing at point x should be P�nx�= � n

nx
��Gx�nx.

Combining this with the simple Poisson probability of n
proteins existing, we find

P�n�� = 	
x

all space
e−gGx/k�gGx/k�nx

nx!
. �3�

We note that, while we implicitly used a vector n� which
began at the spatial point 0, the solution takes the form of
Eq. �3� for other geometries as well. We also note that the
form of the solution for the probability of bicoid concentra-
tion P�n�� is simply that of a Poisson distribution with aver-
age value gGx /k for each point in space, without spatial cor-
relations. This is suggested, but not explored in detail, by a
solution to a different problem in �27�. Others, e.g., �10�,
state a Poisson solution, but we believe that this approach
offers a useful contribution to the understanding of the prob-
lem because it is relatively simple and straightforward.

Given the form of the ansatz, we will define the Poisson

distribution for the point x, Px�nx�=
e−gGx/k�gGx/k�nx

nx!
, and note

that Px�nx+1�=
e−gGx/k�gGx/k��nx+1�

�nx+1�! =
gGx/k
nx+1 Px�nx�.

Then inserting the ansatz into the master equation,

dP�n��
dt

= 
 g� n0

gG0/k
− 1�

+ k�x
��gGx/k� − nx�

+ D�xy �ny
Gx

Gy
� − nx� � 	

x�

space

Px��nx�� .

Using �xGx=1, and rearranging a sum,

dP�n��
dt

= 

kn0

G0
− g + k

g

k
− k�x

nx

+ D�xy �nx
Gy

Gx
� − nx� � 	

x�

space

Px��nx�� .

Again, all space in this geometry is x=0,�x ,2�x , . . ., and
the neighbors x are y=x��x, except at x=0 where y can
only be �x. Therefore

dP�n��
dt

= 

kn0

G0
− kn0 + Dn0�G�x

G0
− 1�

− k�x=1

�
nx1 +

D

k
�Gx+�x

Gx
+

Gx−�x

Gx
− 2�� �

� 	
x�=0

�

Px��nx�� . �4�

Since we are interested in the steady state solution, we solve
for dP�n��

dt =0. As nx can in theory be any finite number, to
ensure that the right-hand side of Eq. �4� is 0 we must ensure
that the coefficients of each nx are 0.

k

G0
− k + D�G�x

G0
− 1� = 0

− k + D�Gx+�x

Gx
+

Gx−�x

Gx
− 2� = 0, x � 0

Defining for convenience z��1+ k
2D −� k2

4D2 + k
D �, the solu-

tion,

G0 = 1 − z ,

Gx = zGx−�x = zx/�x�1 − z� = �1 − z�eln�z�x/�x,

is simple. Since the mean of the distribution should be given
by gGx /k, it is reassuring to note that it corresponds to a
decaying exponential function �ln z�0�, the same form ex-
pected from both experiment and nonstochastic theory. It
should be noted that this does not correspond exactly to the
expected e−x�k/D; this is because the definition of D is not
precisely the same for finite-volume spaces, and because
within each space the solution is assumed to be well-mixed.
However, both of these issues can be avoided by using small
enough distances between spatial points.

Substituting Gx into our formulation of P�n��, we obtain
the final analytical expression for the probability:

P�n�� = 	
x

all space
e−gzx/�x�1−z�/k�gzx/�x�1 − z�/k�nx

nx!
. �5�

We note that if this form is used in the original chemical
master equation, it does in fact give dP

dt =0, and therefore the
ansatz is the correct and exact analytical solution to the
steady-state problem.

Both the mean values and the noise given by this model,
which decay exponentially from anterior �A� to posterior �P�,
seem to match current experimental data �see Figs. 1 and 2�,
with some caveats regarding the effective diffusion constant
�8�. In both figures, the first 20% of the embryo is assumed
to be part of a diffuse source of unknown local concentration
and is therefore not considered part of the overall Green
function fit. The main portion of Fig. 1 has a line with pre-
dicted values, and two more with predicted uncertainties
from both intrinsic and experimental noise.

The inset shows probability distributions with only intrin-
sic �nonexperimental� noise for nuclei at 47% and 49% em-
bryo length. These two locations mark the end of the head
and the beginning of the body, and in spite of significant
overlap in the probability distributions of bicoid concentra-
tions �and additional issues with subsampling�, the embryo is
capable of almost perfectly distinguishing on which side of
the 48% embryo length boundary they fall. This fact is at the
center of current debate on the subject of how precisely such
accuracy is achieved; some, e.g., �8�, favor a simple averag-
ing scheme over neighboring spatial points by means of
hunchback self-interaction, while others suggest a more
complex system involving more kinds of proteins and some
pattern formation �28,29�. In either case, it is useful to know
that the minimum reasonable noise, that of a Poisson distri-
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bution, can be considered correct and exact given the basic
assumptions mentioned previously.

These statistical fluctuations, given the Poisson form
of the solution, are easy to calculate: 	=�gGx /k
=�geln�z�x/�x�1−z� /k. We see that, since ln z�0, the size of
the fluctuation decays from A to P �clearly shown in Fig. 2�.
Adding expected experimental noise from photon counting
and focal plane alignment gives a larger �and no longer

purely Poisson� noise. The inset shows fractional uncertainty,
	 /C, where C is the number of bicoid molecules, and the
trend of increasing total �experimental plus intrinsic� frac-
tional uncertainty from A to P agrees with experiment.

It should be noted that these experimental results are
likely accurate, but still somewhat preliminary; other results,
with more data but obtained using different methods involv-
ing difficult calibrations, may support a different distribution
�7�. However, should other distributions prove more realistic,
the examined model should give valuable insight into the
actual mechanisms in D. melanogaster: non-Poisson genera-
tion, nonmonomer decay, or some other important process
not previously mentioned would be vital in forming the
shape of the distribution.

While the precise mathematics have involved a one-
dimensional problem with a source exactly at one end, it
would not be difficult to prove the validity of the same kind
of solution with a different geometry. Another boundary con-
dition, a moved or spread-out source, and an additional di-
mension or two should make it less easy to find the solution
for Gx by hand, but the problem is not difficult with a com-
puter. In any case, the validity of the general solution, with a
Poisson distribution at every point in space, can be applied in
any situation for which there are particles which diffuse, de-
cay, and have one or multiple Markovian �Poisson-type�
sources.

It is important that, even though diffusion relates the con-
centration at one point in space with a concentration at an-
other, it does not cause spatial correlations in this system.
This is an important result because, while experimenters and
theorists have always assumed Poisson-type intrinsic noise
was the minimum possible, additional intrinsic noise and
correlations have been thought possible �7�. In this system,
they do not exist because each protein’s existence and loca-
tion are independent of every other protein’s existence and
location. Spatial correlations may exist in cases where pro-
tein generation is non-Poisson, protein decay is nonmono-
mer, or spatial transport does not have the traditional �2C
form. Of these cases, this paper’s methods should be most
easily generalized to non-Poisson protein generation.

Now we turn to the discussion of spatial landscape, a
different way to view the probability distributions involved.
We use generalized potential landscape U=−ln P to relate
with the steady-state probabilistic functional obtained by the
exact solution of the spatial-dependent master equation
above. In Fig. 3, we show the landscape in concentration and
space. We can see from the bottom panel that the shape of
the landscape at each spatial point is like a funnel with the
bottom of the lowest potential corresponding to the peak of
the probabilistic distribution at that location. This is also
clear from the two-dimensional representations of the poten-
tial versus protein number shown above the main graph at
20%, 50%, and 80% egg length. The widths of the funnels
are measured by the variances in potential at each spatial
location. A funneled landscape implies that the network is
stable and robust. In this way, it can perform its biological
function effectively and reliably. As we can see the funneled
landscape becomes narrower from anterior to posterior. This
implies varying stability and robustness distributed along
spatial locations.

FIG. 1. �Color online� Calculation of expected distribution ver-
sus data, courtesy of Dr. Tomas Gregor, from an embryo. Error bars
include intrinsic Poisson noise from proteins, photon counting
noise, and a small constant Gaussian noise intended to account for
focal plane alignment. Errors from nuclear identification are not
included. This fit gives 
2 /degree of freedom=1.26.

FIG. 2. �Color online� Calculated noise from Fig. 1; dotted blue
line shows intrinsic noise only, while the solid red line shows both
intrinsic and predicted experimental noise. Inset shows the pre-
dicted total experimental standard deviation divided by the mean,
with dotted blue and solid red lines having the same meaning. Both
solid lines follow roughly the trends as in �8�, though without errors
from nuclear identification they are somewhat smaller than the real
experimental uncertainties.
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In summary, we used a relatively common model of pro-
tein production, diffusion, and degradation to solve exactly
and analytically for the stochastic distribution of the bicoid
protein in Drosophila melanogaster. The probabilistic solu-
tion is a Poisson distribution at each point in space, with the
mean of the Poisson distribution decaying exponentially
away from the source, and matches current experimental data
well. The intrinsic fluctuations, noise due to a finite number
of molecules in the system and which do not exist in the
bulk, decrease away from the source at a slower rate than the
mean. We also discussed how to uncover the underlying spa-
tial landscape from the probabilistic distribution. The land-
scape provides a global and physical foundation of quantita-
tively addressing the critical issues of stability, robustness,

and function of the spatial-dependent cellular networks. The
methodology used here can be easily generalized to more
dimensions and different boundary conditions and can be
applied to any stochastic system with similar creation, diffu-
sion, and decay processes.
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